| Dag Na    |  |  |  |  |
|-----------|--|--|--|--|
| Reg. No.: |  |  |  |  |

## G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.



## PG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2023 and later)

## PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

| SEM | CATEGORY   | COMPONENT | COURSE CODE | COURSE TITLE      |
|-----|------------|-----------|-------------|-------------------|
| I   | PART - III | CORE - 2  | P23MA102    | REAL ANALYSIS - I |

| I                 | PA                 | RT - II   | II CORE - 2 P23MA102 REAL AN                                                                                                                                                                     |                                                                                                                                   | REAL ANALYSIS - I                                                                              |  |  |  |
|-------------------|--------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| Date              | & Sessi            | on : 24   | 4.04.2025/AN                                                                                                                                                                                     | Time: 3 hours                                                                                                                     | Maximum: 75 Marks                                                                              |  |  |  |
| Course<br>Outcome | Bloom's<br>K-level | Q.<br>No. | SECTION - A (10 X 1 = 10 Marks)  Answer ALL Questions.                                                                                                                                           |                                                                                                                                   |                                                                                                |  |  |  |
| CO1               | K1                 | 1.        | If <i>f</i> is monotonic on [a a) infinite interval c) finite interval                                                                                                                           | , ,                                                                                                                               |                                                                                                |  |  |  |
| CO1               | K2                 | 2.        |                                                                                                                                                                                                  | is convergent but not a $\sum_{n=1}^{\infty} \left(\frac{-1}{n}\right)$ c) $\sum_{n=1}^{\infty}$                                  |                                                                                                |  |  |  |
| CO2               | K1                 | 3.        | _                                                                                                                                                                                                | hich of the following is conditional $\underline{I}(f,\alpha) \leq \overline{I}(f,\alpha)$ c) $\overline{I}(f,\alpha)$            | orrect one?<br>$\underline{I}(f,\alpha)$ d) $\underline{I}(f,\alpha) < \overline{I}(f,\alpha)$ |  |  |  |
| CO2               | K2                 | 4.        | Write down the value (a) a b)                                                                                                                                                                    |                                                                                                                                   | d) 0                                                                                           |  |  |  |
| CO3               | K1                 | 5.        |                                                                                                                                                                                                  | wing set has a measure $[0,1]$ c) $\mathbb{R}$                                                                                    | d) Q <sup>c</sup>                                                                              |  |  |  |
| CO3               | K2                 | 6.        | A property is said to hold almost everywhere on a subset S of $\mathbb{R}^1$ if it holds everywhere on S except for  a) an interval in S                                                         |                                                                                                                                   |                                                                                                |  |  |  |
| CO4               | K1                 | 7.        | What is the limit of $f(x)$ a) 0 b)                                                                                                                                                              | $(p,q) = \frac{pq}{p^2 + q^2} \text{ as } p \to \infty, q \to 0$ $(p,q) = \frac{pq}{p^2 + q^2} \text{ as } p \to \infty, q \to 0$ | d) not exists                                                                                  |  |  |  |
| CO4               | K2                 | 8.        |                                                                                                                                                                                                  | the radius of convergence $r = \infty$ c) $r = 1$                                                                                 |                                                                                                |  |  |  |
| CO5               | K1                 | 9.        |                                                                                                                                                                                                  | here $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ if $x \in R$ ,<br>1 c) $\cos n$                                                          | n = 1,2,3,<br>x d) does not exist                                                              |  |  |  |
| CO5               | K2                 | 10.       | A sequence of function is on T. a) totally bounded c) uniformly bounded                                                                                                                          | b) pointwise converg                                                                                                              | dedly convergent on T if $\{f_n\}$<br>gent and uniformly bounded<br>gent and totally bounded   |  |  |  |
| Course<br>Outcome | Bloom's<br>K-level | Q.<br>No. | $\frac{\text{SECTION} - B}{\text{Answer }} (5 \text{ X } 5 = 25 \text{ Marks})$ Answer ALL Questions choosing either (a) or (b)                                                                  |                                                                                                                                   |                                                                                                |  |  |  |
| CO1               | K2                 | 11a.      | If $f$ is continuous on $[a,b]$ and if $f'$ exists and is bounded in the interior that is $ f'(x)  \le A$ for all $x$ in $(a,b)$ , then illustrate that $f$ is of bounded variation on $[a,b]$ . |                                                                                                                                   |                                                                                                |  |  |  |
| CO1               | K2                 | 11b.      | Write down the staten                                                                                                                                                                            | ( <b>OR)</b><br>nent and proof of the Dir                                                                                         | ichlet's test.                                                                                 |  |  |  |

| CO2 | K2 | 12a. | If $f \in R(\alpha)$ and if $g \in R(\alpha)$ on $[a, b]$ , show that $c_1 f + c_2 g \in R(\alpha)$ on $[a, b]$ and $\int_a^b (c_1 f + c_2 g) d\alpha = c_1 \int_a^b f d\alpha + c_2 \int_a^b g d\alpha.$ |
|-----|----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | K2 | 12b. | Assume that $\alpha \nearrow$ on $[a,b]$ . If $f \in R(\alpha)$ , Show that $f^2 \in R(\alpha)$ on $[a,b]$ .                                                                                              |
| CO3 | К3 | 13a. | Write down the statement and the proof of the First mean-value theorem for Riemann-Stieltjes integrals.  (OR)                                                                                             |
| CO3 | КЗ | 13b. | Write down the statement and the proof of second fundamental theorem of integral calculus.                                                                                                                |
| CO4 | К3 | 14a. | If a series is convergent with sum S, then illustrate that it is also $(C,1)$ summable with Cesaro sum S.  (OR)                                                                                           |
| CO4 | КЗ | 14b. | Write down the statement of Abel's limit Theorem and illustrate it.                                                                                                                                       |
| CO5 | K4 | 15a. | Prove that $\lim_{n\to\infty} \int_0^1 f_n(x) dx \neq \int_0^1 \lim_{n\to\infty} f_n(x) dx$ where $f_n(x) = n^2 x (1-x)^n$ where $x \in R, n = 1, 2, 3,$ (OR)                                             |
| CO5 | K4 | 15b. | Write down the statement of Dirichlet's test for uniform convergence and illustrate it.                                                                                                                   |

| Course<br>Outcome | Bloom's<br>K-level | Q.<br>No | $\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|--------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1               | K4                 | 16a.     | Let $f$ be of bounded variation on $[a,b]$ and assume that $c \in (a,b)$ . Show that $f$ is of bounded variation on $[a,c]$ and $[c,b]$ and $V_f(a,b) = V_f(a,c) + V_f(c,b)$ . <b>(OR)</b>                                                                                                                                                                                                                                                                                                |
| CO1               | K4                 | 16b.     | Let $\sum a_n$ be an absolutely convergent series having sum $s$ . Then show that every arrangement of $\sum a_n$ also converges absolutely and has sum $s$ .                                                                                                                                                                                                                                                                                                                             |
| CO2               | K5                 | 17a.     | State and prove the integration by parts formula.  (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CO2               | K5                 | 17b.     | Assume $f \in R(\alpha)$ on $[a,b]$ and assume that $\alpha$ has continuous derivative $\alpha'$ on $[a,b]$ . Prove that the Riemann integral $\int_a^b f(x)\alpha'(x)dx$ exists and $\int_a^b f(x)d\alpha(x) = \int_a^b f(x)\alpha'(x)dx$ .                                                                                                                                                                                                                                              |
| CO3               | K5                 | 18a.     | Assume that $\alpha$ is of bounded variation on $[a,b]$ . Let $V(x)$ denote the total variation of $\alpha$ on $[a,x]$ if $a < x \le b$ and let $V(a) = 0$ . Let $f$ defined and bounded on $[a,b]$ . If $f \in R(\alpha)$ on $[a,b]$ , then prove that $f \in R(V)$ on $[a,b]$ .                                                                                                                                                                                                         |
| CO3               | K5                 | 18b.     | State and prove the Lebesgue's criterion for Riemann-integrability.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CO4               | K5                 | 19a.     | State and prove the Merten's Theorem. (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CO4               | K5                 | 19b.     | State and prove the Bernstein's Theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CO5               | К6                 | 20a.     | Write down the statement of Dirichlet's test for uniform convergence and compose the proof of it.  (OR)                                                                                                                                                                                                                                                                                                                                                                                   |
| CO5               | K6                 | 20b.     | Let $\{f_n\}$ be a boundedly convergent sequence on [a,b]. Assume that each $f_n \in R$ on [a,b] and that the limit function $f \in R$ on [a,b]. Assume also that there is a partition P of [a,b], say $P = \{x_0, x_1,, x_m\}$ such that on every subinterval [c,d] not containing any of the points $x_k$ , the sequence $\{f_n\}$ converges uniformly to $f$ . Then prove that $\lim_{n \to \infty} \int_a^b f_n(t)  dt = \int_a^b \lim_{n \to \infty} f_n(t)  dt = \int_a^b f(t)  dt$ |